minetest/src/voxelalgorithms.cpp
Dániel Juhász 57e5aa6628 Light update for map blocks
This is not really different from the light update of a voxel
manipulator. This update does not assume that the lighting was correct
before, therefore it is useful for correction.

Also expose this function to the Lua API for light correction, and
allow voxel manipulators not to update the light.
2017-04-20 05:39:14 +02:00

1475 lines
46 KiB
C++

/*
Minetest
Copyright (C) 2010-2013 celeron55, Perttu Ahola <celeron55@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "voxelalgorithms.h"
#include "nodedef.h"
#include "mapblock.h"
#include "map.h"
namespace voxalgo
{
void setLight(VoxelManipulator &v, VoxelArea a, u8 light,
INodeDefManager *ndef)
{
for(s32 x=a.MinEdge.X; x<=a.MaxEdge.X; x++)
for(s32 z=a.MinEdge.Z; z<=a.MaxEdge.Z; z++)
for(s32 y=a.MinEdge.Y; y<=a.MaxEdge.Y; y++)
{
v3s16 p(x,y,z);
MapNode &n = v.getNodeRefUnsafe(p);
n.setLight(LIGHTBANK_DAY, light, ndef);
n.setLight(LIGHTBANK_NIGHT, light, ndef);
}
}
void clearLightAndCollectSources(VoxelManipulator &v, VoxelArea a,
enum LightBank bank, INodeDefManager *ndef,
std::set<v3s16> & light_sources,
std::map<v3s16, u8> & unlight_from)
{
// The full area we shall touch
VoxelArea required_a = a;
required_a.pad(v3s16(0,0,0));
// Make sure we have access to it
v.addArea(a);
for(s32 x=a.MinEdge.X; x<=a.MaxEdge.X; x++)
for(s32 z=a.MinEdge.Z; z<=a.MaxEdge.Z; z++)
for(s32 y=a.MinEdge.Y; y<=a.MaxEdge.Y; y++)
{
v3s16 p(x,y,z);
MapNode &n = v.getNodeRefUnsafe(p);
u8 oldlight = n.getLight(bank, ndef);
n.setLight(bank, 0, ndef);
// If node sources light, add to list
u8 source = ndef->get(n).light_source;
if(source != 0)
light_sources.insert(p);
// Collect borders for unlighting
if((x==a.MinEdge.X || x == a.MaxEdge.X
|| y==a.MinEdge.Y || y == a.MaxEdge.Y
|| z==a.MinEdge.Z || z == a.MaxEdge.Z)
&& oldlight != 0)
{
unlight_from[p] = oldlight;
}
}
}
SunlightPropagateResult propagateSunlight(VoxelManipulator &v, VoxelArea a,
bool inexistent_top_provides_sunlight,
std::set<v3s16> & light_sources,
INodeDefManager *ndef)
{
// Return values
bool bottom_sunlight_valid = true;
// The full area we shall touch extends one extra at top and bottom
VoxelArea required_a = a;
required_a.pad(v3s16(0,1,0));
// Make sure we have access to it
v.addArea(a);
s16 max_y = a.MaxEdge.Y;
s16 min_y = a.MinEdge.Y;
for(s32 x=a.MinEdge.X; x<=a.MaxEdge.X; x++)
for(s32 z=a.MinEdge.Z; z<=a.MaxEdge.Z; z++)
{
v3s16 p_overtop(x, max_y+1, z);
bool overtop_has_sunlight = false;
// If overtop node does not exist, trust heuristics
if(!v.exists(p_overtop))
overtop_has_sunlight = inexistent_top_provides_sunlight;
else if(v.getNodeRefUnsafe(p_overtop).getContent() == CONTENT_IGNORE)
overtop_has_sunlight = inexistent_top_provides_sunlight;
// Otherwise refer to it's light value
else
overtop_has_sunlight = (v.getNodeRefUnsafe(p_overtop).getLight(
LIGHTBANK_DAY, ndef) == LIGHT_SUN);
// Copy overtop's sunlight all over the place
u8 incoming_light = overtop_has_sunlight ? LIGHT_SUN : 0;
for(s32 y=max_y; y>=min_y; y--)
{
v3s16 p(x,y,z);
MapNode &n = v.getNodeRefUnsafe(p);
if(incoming_light == 0){
// Do nothing
} else if(incoming_light == LIGHT_SUN &&
ndef->get(n).sunlight_propagates){
// Do nothing
} else if(ndef->get(n).sunlight_propagates == false){
incoming_light = 0;
} else {
incoming_light = diminish_light(incoming_light);
}
u8 old_light = n.getLight(LIGHTBANK_DAY, ndef);
if(incoming_light > old_light)
n.setLight(LIGHTBANK_DAY, incoming_light, ndef);
if(diminish_light(incoming_light) != 0)
light_sources.insert(p);
}
// Check validity of sunlight at top of block below if it
// hasn't already been proven invalid
if(bottom_sunlight_valid)
{
bool sunlight_should_continue_down = (incoming_light == LIGHT_SUN);
v3s16 p_overbottom(x, min_y-1, z);
if(!v.exists(p_overbottom) ||
v.getNodeRefUnsafe(p_overbottom
).getContent() == CONTENT_IGNORE){
// Is not known, cannot compare
} else {
bool overbottom_has_sunlight = (v.getNodeRefUnsafe(p_overbottom
).getLight(LIGHTBANK_DAY, ndef) == LIGHT_SUN);
if(sunlight_should_continue_down != overbottom_has_sunlight){
bottom_sunlight_valid = false;
}
}
}
}
return SunlightPropagateResult(bottom_sunlight_valid);
}
/*!
* A direction.
* 0=X+
* 1=Y+
* 2=Z+
* 3=Z-
* 4=Y-
* 5=X-
* 6=no direction
* Two directions are opposite only if their sum is 5.
*/
typedef u8 direction;
/*!
* Relative node position.
* This represents a node's position in its map block.
* All coordinates must be between 0 and 15.
*/
typedef v3s16 relative_v3;
/*!
* Position of a map block (block coordinates).
* One block_pos unit is as long as 16 node position units.
*/
typedef v3s16 mapblock_v3;
//! Contains information about a node whose light is about to change.
struct ChangingLight {
//! Relative position of the node in its map block.
relative_v3 rel_position;
//! Position of the node's block.
mapblock_v3 block_position;
//! Pointer to the node's block.
MapBlock *block;
/*!
* Direction from the node that caused this node's changing
* to this node.
*/
direction source_direction;
ChangingLight() :
rel_position(),
block_position(),
block(NULL),
source_direction(6)
{}
ChangingLight(relative_v3 rel_pos, mapblock_v3 block_pos,
MapBlock *b, direction source_dir) :
rel_position(rel_pos),
block_position(block_pos),
block(b),
source_direction(source_dir)
{}
};
/*!
* A fast, priority queue-like container to contain ChangingLights.
* The ChangingLights are ordered by the given light levels.
* The brightest ChangingLight is returned first.
*/
struct LightQueue {
//! For each light level there is a vector.
std::vector<ChangingLight> lights[LIGHT_SUN + 1];
//! Light of the brightest ChangingLight in the queue.
u8 max_light;
/*!
* Creates a LightQueue.
* \param reserve for each light level that many slots are reserved.
*/
LightQueue(size_t reserve)
{
max_light = LIGHT_SUN;
for (u8 i = 0; i <= LIGHT_SUN; i++) {
lights[i].reserve(reserve);
}
}
/*!
* Returns the next brightest ChangingLight and
* removes it from the queue.
* If there were no elements in the queue, the given parameters
* remain unmodified.
* \param light light level of the popped ChangingLight
* \param data the ChangingLight that was popped
* \returns true if there was a ChangingLight in the queue.
*/
bool next(u8 &light, ChangingLight &data)
{
while (lights[max_light].empty()) {
if (max_light == 0) {
return false;
}
max_light--;
}
light = max_light;
data = lights[max_light].back();
lights[max_light].pop_back();
return true;
}
/*!
* Adds an element to the queue.
* The parameters are the same as in ChangingLight's constructor.
* \param light light level of the ChangingLight
*/
inline void push(u8 light, const relative_v3 &rel_pos,
const mapblock_v3 &block_pos, MapBlock *block,
direction source_dir)
{
assert(light <= LIGHT_SUN);
lights[light].push_back(
ChangingLight(rel_pos, block_pos, block, source_dir));
}
};
/*!
* This type of light queue is for unlighting.
* A node can be pushed in it only if its raw light is zero.
* This prevents pushing nodes twice into this queue.
* The light of the pushed ChangingLight must be the
* light of the node before unlighting it.
*/
typedef LightQueue UnlightQueue;
/*!
* This type of light queue is for spreading lights.
* While spreading lights, all the nodes in it must
* have the same light as the light level the ChangingLights
* were pushed into this queue with. This prevents unnecessary
* re-pushing of the nodes into the queue.
* If a node doesn't let light trough but emits light, it can be added
* too.
*/
typedef LightQueue ReLightQueue;
/*!
* neighbor_dirs[i] points towards
* the direction i.
* See the definition of the type "direction"
*/
const static v3s16 neighbor_dirs[6] = {
v3s16(1, 0, 0), // right
v3s16(0, 1, 0), // top
v3s16(0, 0, 1), // back
v3s16(0, 0, -1), // front
v3s16(0, -1, 0), // bottom
v3s16(-1, 0, 0), // left
};
/*!
* Transforms the given map block offset by one node towards
* the specified direction.
* \param dir the direction of the transformation
* \param rel_pos the node's relative position in its map block
* \param block_pos position of the node's block
*/
bool step_rel_block_pos(direction dir, relative_v3 &rel_pos,
mapblock_v3 &block_pos)
{
switch (dir) {
case 0:
if (rel_pos.X < MAP_BLOCKSIZE - 1) {
rel_pos.X++;
} else {
rel_pos.X = 0;
block_pos.X++;
return true;
}
break;
case 1:
if (rel_pos.Y < MAP_BLOCKSIZE - 1) {
rel_pos.Y++;
} else {
rel_pos.Y = 0;
block_pos.Y++;
return true;
}
break;
case 2:
if (rel_pos.Z < MAP_BLOCKSIZE - 1) {
rel_pos.Z++;
} else {
rel_pos.Z = 0;
block_pos.Z++;
return true;
}
break;
case 3:
if (rel_pos.Z > 0) {
rel_pos.Z--;
} else {
rel_pos.Z = MAP_BLOCKSIZE - 1;
block_pos.Z--;
return true;
}
break;
case 4:
if (rel_pos.Y > 0) {
rel_pos.Y--;
} else {
rel_pos.Y = MAP_BLOCKSIZE - 1;
block_pos.Y--;
return true;
}
break;
case 5:
if (rel_pos.X > 0) {
rel_pos.X--;
} else {
rel_pos.X = MAP_BLOCKSIZE - 1;
block_pos.X--;
return true;
}
break;
}
return false;
}
/*
* Removes all light that is potentially emitted by the specified
* light sources. These nodes will have zero light.
* Returns all nodes whose light became zero but should be re-lighted.
*
* \param bank the light bank in which the procedure operates
* \param from_nodes nodes whose light is removed
* \param light_sources nodes that should be re-lighted
* \param modified_blocks output, all modified map blocks are added to this
*/
void unspread_light(Map *map, INodeDefManager *nodemgr, LightBank bank,
UnlightQueue &from_nodes, ReLightQueue &light_sources,
std::map<v3s16, MapBlock*> &modified_blocks)
{
// Stores data popped from from_nodes
u8 current_light;
ChangingLight current;
// Data of the current neighbor
mapblock_v3 neighbor_block_pos;
relative_v3 neighbor_rel_pos;
// A dummy boolean
bool is_valid_position;
// Direction of the brightest neighbor of the node
direction source_dir;
while (from_nodes.next(current_light, current)) {
// For all nodes that need unlighting
// There is no brightest neighbor
source_dir = 6;
// The current node
const MapNode &node = current.block->getNodeNoCheck(
current.rel_position, &is_valid_position);
const ContentFeatures &f = nodemgr->get(node);
// If the node emits light, it behaves like it had a
// brighter neighbor.
u8 brightest_neighbor_light = f.light_source + 1;
for (direction i = 0; i < 6; i++) {
//For each neighbor
// The node that changed this node has already zero light
// and it can't give light to this node
if (current.source_direction + i == 5) {
continue;
}
// Get the neighbor's position and block
neighbor_rel_pos = current.rel_position;
neighbor_block_pos = current.block_position;
MapBlock *neighbor_block;
if (step_rel_block_pos(i, neighbor_rel_pos, neighbor_block_pos)) {
neighbor_block = map->getBlockNoCreateNoEx(neighbor_block_pos);
if (neighbor_block == NULL) {
current.block->setLightingComplete(bank, i, false);
continue;
}
} else {
neighbor_block = current.block;
}
// Get the neighbor itself
MapNode neighbor = neighbor_block->getNodeNoCheck(neighbor_rel_pos,
&is_valid_position);
const ContentFeatures &neighbor_f = nodemgr->get(
neighbor.getContent());
u8 neighbor_light = neighbor.getLightRaw(bank, neighbor_f);
// If the neighbor has at least as much light as this node, then
// it won't lose its light, since it should have been added to
// from_nodes earlier, so its light would be zero.
if (neighbor_f.light_propagates && neighbor_light < current_light) {
// Unlight, but only if the node has light.
if (neighbor_light > 0) {
neighbor.setLight(bank, 0, neighbor_f);
neighbor_block->setNodeNoCheck(neighbor_rel_pos, neighbor);
from_nodes.push(neighbor_light, neighbor_rel_pos,
neighbor_block_pos, neighbor_block, i);
// The current node was modified earlier, so its block
// is in modified_blocks.
if (current.block != neighbor_block) {
modified_blocks[neighbor_block_pos] = neighbor_block;
}
}
} else {
// The neighbor can light up this node.
if (neighbor_light < neighbor_f.light_source) {
neighbor_light = neighbor_f.light_source;
}
if (brightest_neighbor_light < neighbor_light) {
brightest_neighbor_light = neighbor_light;
source_dir = i;
}
}
}
// If the brightest neighbor is able to light up this node,
// then add this node to the output nodes.
if (brightest_neighbor_light > 1 && f.light_propagates) {
brightest_neighbor_light--;
light_sources.push(brightest_neighbor_light, current.rel_position,
current.block_position, current.block,
(source_dir == 6) ? 6 : 5 - source_dir
/* with opposite direction*/);
}
}
}
/*
* Spreads light from the specified starting nodes.
*
* Before calling this procedure, make sure that all ChangingLights
* in light_sources have as much light on the map as they have in
* light_sources (if the queue contains a node multiple times, the brightest
* occurrence counts).
*
* \param bank the light bank in which the procedure operates
* \param light_sources starting nodes
* \param modified_blocks output, all modified map blocks are added to this
*/
void spread_light(Map *map, INodeDefManager *nodemgr, LightBank bank,
LightQueue &light_sources,
std::map<v3s16, MapBlock*> &modified_blocks)
{
// The light the current node can provide to its neighbors.
u8 spreading_light;
// The ChangingLight for the current node.
ChangingLight current;
// Position of the current neighbor.
mapblock_v3 neighbor_block_pos;
relative_v3 neighbor_rel_pos;
// A dummy boolean.
bool is_valid_position;
while (light_sources.next(spreading_light, current)) {
spreading_light--;
for (direction i = 0; i < 6; i++) {
// This node can't light up its light source
if (current.source_direction + i == 5) {
continue;
}
// Get the neighbor's position and block
neighbor_rel_pos = current.rel_position;
neighbor_block_pos = current.block_position;
MapBlock *neighbor_block;
if (step_rel_block_pos(i, neighbor_rel_pos, neighbor_block_pos)) {
neighbor_block = map->getBlockNoCreateNoEx(neighbor_block_pos);
if (neighbor_block == NULL) {
current.block->setLightingComplete(bank, i, false);
continue;
}
} else {
neighbor_block = current.block;
}
// Get the neighbor itself
MapNode neighbor = neighbor_block->getNodeNoCheck(neighbor_rel_pos,
&is_valid_position);
const ContentFeatures &f = nodemgr->get(neighbor.getContent());
if (f.light_propagates) {
// Light up the neighbor, if it has less light than it should.
u8 neighbor_light = neighbor.getLightRaw(bank, f);
if (neighbor_light < spreading_light) {
neighbor.setLight(bank, spreading_light, f);
neighbor_block->setNodeNoCheck(neighbor_rel_pos, neighbor);
light_sources.push(spreading_light, neighbor_rel_pos,
neighbor_block_pos, neighbor_block, i);
// The current node was modified earlier, so its block
// is in modified_blocks.
if (current.block != neighbor_block) {
modified_blocks[neighbor_block_pos] = neighbor_block;
}
}
}
}
}
}
struct SunlightPropagationUnit{
v2s16 relative_pos;
bool is_sunlit;
SunlightPropagationUnit(v2s16 relpos, bool sunlit):
relative_pos(relpos),
is_sunlit(sunlit)
{}
};
struct SunlightPropagationData{
std::vector<SunlightPropagationUnit> data;
v3s16 target_block;
};
/*!
* Returns true if the node gets sunlight from the
* node above it.
*
* \param pos position of the node.
*/
bool is_sunlight_above(Map *map, v3s16 pos, INodeDefManager *ndef)
{
bool sunlight = true;
mapblock_v3 source_block_pos;
relative_v3 source_rel_pos;
getNodeBlockPosWithOffset(pos + v3s16(0, 1, 0), source_block_pos,
source_rel_pos);
// If the node above has sunlight, this node also can get it.
MapBlock *source_block = map->getBlockNoCreateNoEx(source_block_pos);
if (source_block == NULL) {
// But if there is no node above, then use heuristics
MapBlock *node_block = map->getBlockNoCreateNoEx(getNodeBlockPos(pos));
if (node_block == NULL) {
sunlight = false;
} else {
sunlight = !node_block->getIsUnderground();
}
} else {
bool is_valid_position;
MapNode above = source_block->getNodeNoCheck(source_rel_pos,
&is_valid_position);
if (is_valid_position) {
if (above.getContent() == CONTENT_IGNORE) {
// Trust heuristics
if (source_block->getIsUnderground()) {
sunlight = false;
}
} else if (above.getLight(LIGHTBANK_DAY, ndef) != LIGHT_SUN) {
// If the node above doesn't have sunlight, this
// node is in shadow.
sunlight = false;
}
}
}
return sunlight;
}
static const LightBank banks[] = { LIGHTBANK_DAY, LIGHTBANK_NIGHT };
void update_lighting_nodes(Map *map,
std::vector<std::pair<v3s16, MapNode> > &oldnodes,
std::map<v3s16, MapBlock*> &modified_blocks)
{
INodeDefManager *ndef = map->getNodeDefManager();
// For node getter functions
bool is_valid_position;
// Process each light bank separately
for (s32 i = 0; i < 2; i++) {
LightBank bank = banks[i];
UnlightQueue disappearing_lights(256);
ReLightQueue light_sources(256);
// Nodes that are brighter than the brightest modified node was
// won't change, since they didn't get their light from a
// modified node.
u8 min_safe_light = 0;
for (std::vector<std::pair<v3s16, MapNode> >::iterator it =
oldnodes.begin(); it < oldnodes.end(); ++it) {
u8 old_light = it->second.getLight(bank, ndef);
if (old_light > min_safe_light) {
min_safe_light = old_light;
}
}
// If only one node changed, even nodes with the same brightness
// didn't get their light from the changed node.
if (oldnodes.size() > 1) {
min_safe_light++;
}
// For each changed node process sunlight and initialize
for (std::vector<std::pair<v3s16, MapNode> >::iterator it =
oldnodes.begin(); it < oldnodes.end(); ++it) {
// Get position and block of the changed node
v3s16 p = it->first;
relative_v3 rel_pos;
mapblock_v3 block_pos;
getNodeBlockPosWithOffset(p, block_pos, rel_pos);
MapBlock *block = map->getBlockNoCreateNoEx(block_pos);
if (block == NULL || block->isDummy()) {
continue;
}
// Get the new node
MapNode n = block->getNodeNoCheck(rel_pos, &is_valid_position);
if (!is_valid_position) {
break;
}
// Light of the old node
u8 old_light = it->second.getLight(bank, ndef);
// Add the block of the added node to modified_blocks
modified_blocks[block_pos] = block;
// Get new light level of the node
u8 new_light = 0;
if (ndef->get(n).light_propagates) {
if (bank == LIGHTBANK_DAY && ndef->get(n).sunlight_propagates
&& is_sunlight_above(map, p, ndef)) {
new_light = LIGHT_SUN;
} else {
new_light = ndef->get(n).light_source;
for (int i = 0; i < 6; i++) {
v3s16 p2 = p + neighbor_dirs[i];
bool is_valid;
MapNode n2 = map->getNodeNoEx(p2, &is_valid);
if (is_valid) {
u8 spread = n2.getLight(bank, ndef);
// If it is sure that the neighbor won't be
// unlighted, its light can spread to this node.
if (spread > new_light && spread >= min_safe_light) {
new_light = spread - 1;
}
}
}
}
} else {
// If this is an opaque node, it still can emit light.
new_light = ndef->get(n).light_source;
}
if (new_light > 0) {
light_sources.push(new_light, rel_pos, block_pos, block, 6);
}
if (new_light < old_light) {
// The node became opaque or doesn't provide as much
// light as the previous one, so it must be unlighted.
// Add to unlight queue
n.setLight(bank, 0, ndef);
block->setNodeNoCheck(rel_pos, n);
disappearing_lights.push(old_light, rel_pos, block_pos, block,
6);
// Remove sunlight, if there was any
if (bank == LIGHTBANK_DAY && old_light == LIGHT_SUN) {
for (s16 y = p.Y - 1;; y--) {
v3s16 n2pos(p.X, y, p.Z);
MapNode n2;
n2 = map->getNodeNoEx(n2pos, &is_valid_position);
if (!is_valid_position)
break;
// If this node doesn't have sunlight, the nodes below
// it don't have too.
if (n2.getLight(LIGHTBANK_DAY, ndef) != LIGHT_SUN) {
break;
}
// Remove sunlight and add to unlight queue.
n2.setLight(LIGHTBANK_DAY, 0, ndef);
map->setNode(n2pos, n2);
relative_v3 rel_pos2;
mapblock_v3 block_pos2;
getNodeBlockPosWithOffset(n2pos, block_pos2, rel_pos2);
MapBlock *block2 = map->getBlockNoCreateNoEx(
block_pos2);
disappearing_lights.push(LIGHT_SUN, rel_pos2,
block_pos2, block2,
4 /* The node above caused the change */);
}
}
} else if (new_light > old_light) {
// It is sure that the node provides more light than the previous
// one, unlighting is not necessary.
// Propagate sunlight
if (bank == LIGHTBANK_DAY && new_light == LIGHT_SUN) {
for (s16 y = p.Y - 1;; y--) {
v3s16 n2pos(p.X, y, p.Z);
MapNode n2;
n2 = map->getNodeNoEx(n2pos, &is_valid_position);
if (!is_valid_position)
break;
// This should not happen, but if the node has sunlight
// then the iteration should stop.
if (n2.getLight(LIGHTBANK_DAY, ndef) == LIGHT_SUN) {
break;
}
// If the node terminates sunlight, stop.
if (!ndef->get(n2).sunlight_propagates) {
break;
}
relative_v3 rel_pos2;
mapblock_v3 block_pos2;
getNodeBlockPosWithOffset(n2pos, block_pos2, rel_pos2);
MapBlock *block2 = map->getBlockNoCreateNoEx(
block_pos2);
// Mark node for lighting.
light_sources.push(LIGHT_SUN, rel_pos2, block_pos2,
block2, 4);
}
}
}
}
// Remove lights
unspread_light(map, ndef, bank, disappearing_lights, light_sources,
modified_blocks);
// Initialize light values for light spreading.
for (u8 i = 0; i <= LIGHT_SUN; i++) {
const std::vector<ChangingLight> &lights = light_sources.lights[i];
for (std::vector<ChangingLight>::const_iterator it = lights.begin();
it < lights.end(); ++it) {
MapNode n = it->block->getNodeNoCheck(it->rel_position,
&is_valid_position);
n.setLight(bank, i, ndef);
it->block->setNodeNoCheck(it->rel_position, n);
}
}
// Spread lights.
spread_light(map, ndef, bank, light_sources, modified_blocks);
}
}
/*!
* Borders of a map block in relative node coordinates.
* Compatible with type 'direction'.
*/
const VoxelArea block_borders[] = {
VoxelArea(v3s16(15, 0, 0), v3s16(15, 15, 15)), //X+
VoxelArea(v3s16(0, 15, 0), v3s16(15, 15, 15)), //Y+
VoxelArea(v3s16(0, 0, 15), v3s16(15, 15, 15)), //Z+
VoxelArea(v3s16(0, 0, 0), v3s16(15, 15, 0)), //Z-
VoxelArea(v3s16(0, 0, 0), v3s16(15, 0, 15)), //Y-
VoxelArea(v3s16(0, 0, 0), v3s16(0, 15, 15)) //X-
};
/*!
* Returns true if:
* -the node has unloaded neighbors
* -the node doesn't have light
* -the node's light is the same as the maximum of
* its light source and its brightest neighbor minus one.
* .
*/
bool is_light_locally_correct(Map *map, INodeDefManager *ndef, LightBank bank,
v3s16 pos)
{
bool is_valid_position;
MapNode n = map->getNodeNoEx(pos, &is_valid_position);
const ContentFeatures &f = ndef->get(n);
if (f.param_type != CPT_LIGHT) {
return true;
}
u8 light = n.getLightNoChecks(bank, &f);
assert(f.light_source <= LIGHT_MAX);
u8 brightest_neighbor = f.light_source + 1;
for (direction d = 0; d < 6; ++d) {
MapNode n2 = map->getNodeNoEx(pos + neighbor_dirs[d],
&is_valid_position);
u8 light2 = n2.getLight(bank, ndef);
if (brightest_neighbor < light2) {
brightest_neighbor = light2;
}
}
assert(light <= LIGHT_SUN);
return brightest_neighbor == light + 1;
}
void update_block_border_lighting(Map *map, MapBlock *block,
std::map<v3s16, MapBlock*> &modified_blocks)
{
INodeDefManager *ndef = map->getNodeDefManager();
bool is_valid_position;
for (s32 i = 0; i < 2; i++) {
LightBank bank = banks[i];
// Since invalid light is not common, do not allocate
// memory if not needed.
UnlightQueue disappearing_lights(0);
ReLightQueue light_sources(0);
// Get incorrect lights
for (direction d = 0; d < 6; d++) {
// For each direction
// Get neighbor block
v3s16 otherpos = block->getPos() + neighbor_dirs[d];
MapBlock *other = map->getBlockNoCreateNoEx(otherpos);
if (other == NULL) {
continue;
}
// Only update if lighting was not completed.
if (block->isLightingComplete(bank, d) &&
other->isLightingComplete(bank, 5 - d))
continue;
// Reset flags
block->setLightingComplete(bank, d, true);
other->setLightingComplete(bank, 5 - d, true);
// The two blocks and their connecting surfaces
MapBlock *blocks[] = {block, other};
VoxelArea areas[] = {block_borders[d], block_borders[5 - d]};
// For both blocks
for (u8 blocknum = 0; blocknum < 2; blocknum++) {
MapBlock *b = blocks[blocknum];
VoxelArea a = areas[blocknum];
// For all nodes
for (s32 x = a.MinEdge.X; x <= a.MaxEdge.X; x++)
for (s32 z = a.MinEdge.Z; z <= a.MaxEdge.Z; z++)
for (s32 y = a.MinEdge.Y; y <= a.MaxEdge.Y; y++) {
MapNode n = b->getNodeNoCheck(x, y, z,
&is_valid_position);
u8 light = n.getLight(bank, ndef);
// Sunlight is fixed
if (light < LIGHT_SUN) {
// Unlight if not correct
if (!is_light_locally_correct(map, ndef, bank,
v3s16(x, y, z) + b->getPosRelative())) {
// Initialize for unlighting
n.setLight(bank, 0, ndef);
b->setNodeNoCheck(x, y, z, n);
modified_blocks[b->getPos()]=b;
disappearing_lights.push(light,
relative_v3(x, y, z), b->getPos(), b,
6);
}
}
}
}
}
// Remove lights
unspread_light(map, ndef, bank, disappearing_lights, light_sources,
modified_blocks);
// Initialize light values for light spreading.
for (u8 i = 0; i <= LIGHT_SUN; i++) {
const std::vector<ChangingLight> &lights = light_sources.lights[i];
for (std::vector<ChangingLight>::const_iterator it = lights.begin();
it < lights.end(); ++it) {
MapNode n = it->block->getNodeNoCheck(it->rel_position,
&is_valid_position);
n.setLight(bank, i, ndef);
it->block->setNodeNoCheck(it->rel_position, n);
}
}
// Spread lights.
spread_light(map, ndef, bank, light_sources, modified_blocks);
}
}
/*!
* Resets the lighting of the given VoxelManipulator to
* complete darkness and full sunlight.
* Operates in one map sector.
*
* \param offset contains the least x and z node coordinates
* of the map sector.
* \param light incoming sunlight, light[x][z] is true if there
* is sunlight above the voxel manipulator at the given x-z coordinates.
* The array's indices are relative node coordinates in the sector.
* After the procedure returns, this contains outgoing light at
* the bottom of the voxel manipulator.
*/
void fill_with_sunlight(MMVManip *vm, INodeDefManager *ndef, v2s16 offset,
bool light[MAP_BLOCKSIZE][MAP_BLOCKSIZE])
{
// Distance in array between two nodes on top of each other.
s16 ystride = vm->m_area.getExtent().X;
// Cache the ignore node.
MapNode ignore = MapNode(CONTENT_IGNORE);
// For each column of nodes:
for (s16 z = 0; z < MAP_BLOCKSIZE; z++)
for (s16 x = 0; x < MAP_BLOCKSIZE; x++) {
// Position of the column on the map.
v2s16 realpos = offset + v2s16(x, z);
// Array indices in the voxel manipulator
s32 maxindex = vm->m_area.index(realpos.X, vm->m_area.MaxEdge.Y,
realpos.Y);
s32 minindex = vm->m_area.index(realpos.X, vm->m_area.MinEdge.Y,
realpos.Y);
// True if the current node has sunlight.
bool lig = light[z][x];
// For each node, downwards:
for (s32 i = maxindex; i >= minindex; i -= ystride) {
MapNode *n;
if (vm->m_flags[i] & VOXELFLAG_NO_DATA)
n = &ignore;
else
n = &vm->m_data[i];
// Ignore IGNORE nodes, these are not generated yet.
if(n->getContent() == CONTENT_IGNORE)
continue;
const ContentFeatures &f = ndef->get(n->getContent());
if (lig && !f.sunlight_propagates)
// Sunlight is stopped.
lig = false;
// Reset light
n->setLight(LIGHTBANK_DAY, lig ? 15 : 0, f);
n->setLight(LIGHTBANK_NIGHT, 0, f);
}
// Output outgoing light.
light[z][x] = lig;
}
}
/*!
* Returns incoming sunlight for one map block.
* If block above is not found, it is loaded.
*
* \param pos position of the map block that gets the sunlight.
* \param light incoming sunlight, light[z][x] is true if there
* is sunlight above the block at the given z-x relative
* node coordinates.
*/
void is_sunlight_above_block(ServerMap *map, mapblock_v3 pos,
INodeDefManager *ndef, bool light[MAP_BLOCKSIZE][MAP_BLOCKSIZE])
{
mapblock_v3 source_block_pos = pos + v3s16(0, 1, 0);
// Get or load source block.
// It might take a while to load, but correcting incorrect
// sunlight may be even slower.
MapBlock *source_block = map->emergeBlock(source_block_pos, false);
// Trust only generated blocks.
if (source_block == NULL || source_block->isDummy()
|| !source_block->isGenerated()) {
// But if there is no block above, then use heuristics
bool sunlight = true;
MapBlock *node_block = map->getBlockNoCreateNoEx(pos);
if (node_block == NULL)
// This should not happen.
sunlight = false;
else
sunlight = !node_block->getIsUnderground();
for (s16 z = 0; z < MAP_BLOCKSIZE; z++)
for (s16 x = 0; x < MAP_BLOCKSIZE; x++)
light[z][x] = sunlight;
} else {
// Dummy boolean, the position is valid.
bool is_valid_position;
// For each column:
for (s16 z = 0; z < MAP_BLOCKSIZE; z++)
for (s16 x = 0; x < MAP_BLOCKSIZE; x++) {
// Get the bottom block.
MapNode above = source_block->getNodeNoCheck(x, 0, z,
&is_valid_position);
light[z][x] = above.getLight(LIGHTBANK_DAY, ndef) == LIGHT_SUN;
}
}
}
/*!
* Propagates sunlight down in a given map block.
*
* \param data contains incoming sunlight and shadow and
* the coordinates of the target block.
* \param unlight propagated shadow is inserted here
* \param relight propagated sunlight is inserted here
*
* \returns true if the block was modified, false otherwise.
*/
bool propagate_block_sunlight(Map *map, INodeDefManager *ndef,
SunlightPropagationData *data, UnlightQueue *unlight, ReLightQueue *relight)
{
bool modified = false;
// Get the block.
MapBlock *block = map->getBlockNoCreateNoEx(data->target_block);
if (block == NULL || block->isDummy()) {
// The work is done if the block does not contain data.
data->data.clear();
return false;
}
// Dummy boolean
bool is_valid;
// For each changing column of nodes:
size_t index;
for (index = 0; index < data->data.size(); index++) {
SunlightPropagationUnit it = data->data[index];
// Relative position of the currently inspected node.
relative_v3 current_pos(it.relative_pos.X, MAP_BLOCKSIZE - 1,
it.relative_pos.Y);
if (it.is_sunlit) {
// Propagate sunlight.
// For each node downwards:
for (; current_pos.Y >= 0; current_pos.Y--) {
MapNode n = block->getNodeNoCheck(current_pos, &is_valid);
const ContentFeatures &f = ndef->get(n);
if (n.getLightRaw(LIGHTBANK_DAY, f) < LIGHT_SUN
&& f.sunlight_propagates) {
// This node gets sunlight.
n.setLight(LIGHTBANK_DAY, LIGHT_SUN, f);
block->setNodeNoCheck(current_pos, n);
modified = true;
relight->push(LIGHT_SUN, current_pos, data->target_block,
block, 4);
} else {
// Light already valid, propagation stopped.
break;
}
}
} else {
// Propagate shadow.
// For each node downwards:
for (; current_pos.Y >= 0; current_pos.Y--) {
MapNode n = block->getNodeNoCheck(current_pos, &is_valid);
const ContentFeatures &f = ndef->get(n);
if (n.getLightRaw(LIGHTBANK_DAY, f) == LIGHT_SUN) {
// The sunlight is no longer valid.
n.setLight(LIGHTBANK_DAY, 0, f);
block->setNodeNoCheck(current_pos, n);
modified = true;
unlight->push(LIGHT_SUN, current_pos, data->target_block,
block, 4);
} else {
// Reached shadow, propagation stopped.
break;
}
}
}
if (current_pos.Y >= 0) {
// Propagation stopped, remove from data.
data->data[index] = data->data.back();
data->data.pop_back();
index--;
}
}
return modified;
}
/*!
* Borders of a map block in relative node coordinates.
* The areas do not overlap.
* Compatible with type 'direction'.
*/
const VoxelArea block_pad[] = {
VoxelArea(v3s16(15, 0, 0), v3s16(15, 15, 15)), //X+
VoxelArea(v3s16(1, 15, 0), v3s16(14, 15, 15)), //Y+
VoxelArea(v3s16(1, 1, 15), v3s16(14, 14, 15)), //Z+
VoxelArea(v3s16(1, 1, 0), v3s16(14, 14, 0)), //Z-
VoxelArea(v3s16(1, 0, 0), v3s16(14, 0, 15)), //Y-
VoxelArea(v3s16(0, 0, 0), v3s16(0, 15, 15)) //X-
};
/*!
* The common part of bulk light updates - it is always executed.
* The procedure takes the nodes that should be unlit, and the
* full modified area.
*
* The procedure handles the correction of all lighting except
* direct sunlight spreading.
*
* \param minblock least coordinates of the changed area in block
* coordinates
* \param maxblock greatest coordinates of the changed area in block
* coordinates
* \param unlight the first queue is for day light, the second is for
* night light. Contains all nodes on the borders that need to be unlit.
* \param relight the first queue is for day light, the second is for
* night light. Contains nodes that were not modified, but got sunlight
* because the changes.
* \param modified_blocks the procedure adds all modified blocks to
* this map
*/
void finish_bulk_light_update(Map *map, mapblock_v3 minblock,
mapblock_v3 maxblock, UnlightQueue unlight[2], ReLightQueue relight[2],
std::map<v3s16, MapBlock*> *modified_blocks)
{
INodeDefManager *ndef = map->getNodeDefManager();
// dummy boolean
bool is_valid;
// --- STEP 1: Do unlighting
for (size_t bank = 0; bank < 2; bank++) {
LightBank b = banks[bank];
unspread_light(map, ndef, b, unlight[bank], relight[bank],
*modified_blocks);
}
// --- STEP 2: Get all newly inserted light sources
// For each block:
for (s16 b_x = minblock.X; b_x <= maxblock.X; b_x++)
for (s16 b_y = minblock.Y; b_y <= maxblock.Y; b_y++)
for (s16 b_z = minblock.Z; b_z <= maxblock.Z; b_z++) {
const v3s16 blockpos(b_x, b_y, b_z);
MapBlock *block = map->getBlockNoCreateNoEx(blockpos);
if (!block || block->isDummy())
// Skip not existing blocks
continue;
// For each node in the block:
for (s32 x = 0; x < MAP_BLOCKSIZE; x++)
for (s32 z = 0; z < MAP_BLOCKSIZE; z++)
for (s32 y = 0; y < MAP_BLOCKSIZE; y++) {
v3s16 relpos(x, y, z);
MapNode node = block->getNodeNoCheck(x, y, z, &is_valid);
const ContentFeatures &f = ndef->get(node);
// For each light bank
for (size_t b = 0; b < 2; b++) {
LightBank bank = banks[b];
u8 light = f.param_type == CPT_LIGHT ?
node.getLightNoChecks(bank, &f):
f.light_source;
if (light > 1)
relight[b].push(light, relpos, blockpos, block, 6);
} // end of banks
} // end of nodes
} // end of blocks
// --- STEP 3: do light spreading
// For each light bank:
for (size_t b = 0; b < 2; b++) {
LightBank bank = banks[b];
// Sunlight is already initialized.
u8 maxlight = (b == 0) ? LIGHT_MAX : LIGHT_SUN;
// Initialize light values for light spreading.
for (u8 i = 0; i <= maxlight; i++) {
const std::vector<ChangingLight> &lights = relight[b].lights[i];
for (std::vector<ChangingLight>::const_iterator it = lights.begin();
it < lights.end(); ++it) {
MapNode n = it->block->getNodeNoCheck(it->rel_position,
&is_valid);
n.setLight(bank, i, ndef);
it->block->setNodeNoCheck(it->rel_position, n);
}
}
// Spread lights.
spread_light(map, ndef, bank, relight[b], *modified_blocks);
}
}
void blit_back_with_light(ServerMap *map, MMVManip *vm,
std::map<v3s16, MapBlock*> *modified_blocks)
{
INodeDefManager *ndef = map->getNodeDefManager();
mapblock_v3 minblock = getNodeBlockPos(vm->m_area.MinEdge);
mapblock_v3 maxblock = getNodeBlockPos(vm->m_area.MaxEdge);
// First queue is for day light, second is for night light.
UnlightQueue unlight[] = { UnlightQueue(256), UnlightQueue(256) };
ReLightQueue relight[] = { ReLightQueue(256), ReLightQueue(256) };
// Will hold sunlight data.
bool lights[MAP_BLOCKSIZE][MAP_BLOCKSIZE];
SunlightPropagationData data;
// Dummy boolean.
bool is_valid;
// --- STEP 1: reset everything to sunlight
// For each map block:
for (s16 x = minblock.X; x <= maxblock.X; x++)
for (s16 z = minblock.Z; z <= maxblock.Z; z++) {
// Extract sunlight above.
is_sunlight_above_block(map, v3s16(x, maxblock.Y, z), ndef, lights);
v2s16 offset(x, z);
offset *= MAP_BLOCKSIZE;
// Reset the voxel manipulator.
fill_with_sunlight(vm, ndef, offset, lights);
// Copy sunlight data
data.target_block = v3s16(x, minblock.Y - 1, z);
for (s16 z = 0; z < MAP_BLOCKSIZE; z++)
for (s16 x = 0; x < MAP_BLOCKSIZE; x++)
data.data.push_back(
SunlightPropagationUnit(v2s16(x, z), lights[z][x]));
// Propagate sunlight and shadow below the voxel manipulator.
while (!data.data.empty()) {
if (propagate_block_sunlight(map, ndef, &data, &unlight[0],
&relight[0]))
(*modified_blocks)[data.target_block] =
map->getBlockNoCreateNoEx(data.target_block);
// Step downwards.
data.target_block.Y--;
}
}
// --- STEP 2: Get nodes from borders to unlight
// In case there are unloaded holes in the voxel manipulator
// unlight each block.
// For each block:
for (s16 b_x = minblock.X; b_x <= maxblock.X; b_x++)
for (s16 b_y = minblock.Y; b_y <= maxblock.Y; b_y++)
for (s16 b_z = minblock.Z; b_z <= maxblock.Z; b_z++) {
v3s16 blockpos(b_x, b_y, b_z);
MapBlock *block = map->getBlockNoCreateNoEx(blockpos);
if (!block || block->isDummy())
// Skip not existing blocks.
continue;
v3s16 offset = block->getPosRelative();
// For each border of the block:
for (direction d = 0; d < 6; d++) {
VoxelArea a = block_pad[d];
// For each node of the border:
for (s32 x = a.MinEdge.X; x <= a.MaxEdge.X; x++)
for (s32 z = a.MinEdge.Z; z <= a.MaxEdge.Z; z++)
for (s32 y = a.MinEdge.Y; y <= a.MaxEdge.Y; y++) {
v3s16 relpos(x, y, z);
// Get old and new node
MapNode oldnode = block->getNodeNoCheck(x, y, z, &is_valid);
const ContentFeatures &oldf = ndef->get(oldnode);
MapNode newnode = vm->getNodeNoExNoEmerge(relpos + offset);
const ContentFeatures &newf = ndef->get(newnode);
// For each light bank
for (size_t b = 0; b < 2; b++) {
LightBank bank = banks[b];
u8 oldlight = oldf.param_type == CPT_LIGHT ?
oldnode.getLightNoChecks(bank, &oldf):
LIGHT_SUN; // no light information, force unlighting
u8 newlight = newf.param_type == CPT_LIGHT ?
newnode.getLightNoChecks(bank, &newf):
newf.light_source;
// If the new node is dimmer, unlight.
if (oldlight > newlight) {
unlight[b].push(
oldlight, relpos, blockpos, block, 6);
}
} // end of banks
} // end of nodes
} // end of borders
} // end of blocks
// --- STEP 3: All information extracted, overwrite
vm->blitBackAll(modified_blocks, true);
// --- STEP 4: Finish light update
finish_bulk_light_update(map, minblock, maxblock, unlight, relight,
modified_blocks);
}
/*!
* Resets the lighting of the given map block to
* complete darkness and full sunlight.
*
* \param light incoming sunlight, light[x][z] is true if there
* is sunlight above the map block at the given x-z coordinates.
* The array's indices are relative node coordinates in the block.
* After the procedure returns, this contains outgoing light at
* the bottom of the map block.
*/
void fill_with_sunlight(MapBlock *block, INodeDefManager *ndef,
bool light[MAP_BLOCKSIZE][MAP_BLOCKSIZE])
{
if (block->isDummy())
return;
// dummy boolean
bool is_valid;
// For each column of nodes:
for (s16 z = 0; z < MAP_BLOCKSIZE; z++)
for (s16 x = 0; x < MAP_BLOCKSIZE; x++) {
// True if the current node has sunlight.
bool lig = light[z][x];
// For each node, downwards:
for (s16 y = MAP_BLOCKSIZE - 1; y >= 0; y--) {
MapNode n = block->getNodeNoCheck(x, y, z, &is_valid);
// Ignore IGNORE nodes, these are not generated yet.
if (n.getContent() == CONTENT_IGNORE)
continue;
const ContentFeatures &f = ndef->get(n.getContent());
if (lig && !f.sunlight_propagates) {
// Sunlight is stopped.
lig = false;
}
// Reset light
n.setLight(LIGHTBANK_DAY, lig ? 15 : 0, f);
n.setLight(LIGHTBANK_NIGHT, 0, f);
block->setNodeNoCheck(x, y, z, n);
}
// Output outgoing light.
light[z][x] = lig;
}
}
void repair_block_light(ServerMap *map, MapBlock *block,
std::map<v3s16, MapBlock*> *modified_blocks)
{
if (!block || block->isDummy())
return;
INodeDefManager *ndef = map->getNodeDefManager();
// First queue is for day light, second is for night light.
UnlightQueue unlight[] = { UnlightQueue(256), UnlightQueue(256) };
ReLightQueue relight[] = { ReLightQueue(256), ReLightQueue(256) };
// Will hold sunlight data.
bool lights[MAP_BLOCKSIZE][MAP_BLOCKSIZE];
SunlightPropagationData data;
// Dummy boolean.
bool is_valid;
// --- STEP 1: reset everything to sunlight
mapblock_v3 blockpos = block->getPos();
(*modified_blocks)[blockpos] = block;
// For each map block:
// Extract sunlight above.
is_sunlight_above_block(map, blockpos, ndef, lights);
// Reset the voxel manipulator.
fill_with_sunlight(block, ndef, lights);
// Copy sunlight data
data.target_block = v3s16(blockpos.X, blockpos.Y - 1, blockpos.Z);
for (s16 z = 0; z < MAP_BLOCKSIZE; z++)
for (s16 x = 0; x < MAP_BLOCKSIZE; x++) {
data.data.push_back(
SunlightPropagationUnit(v2s16(x, z), lights[z][x]));
}
// Propagate sunlight and shadow below the voxel manipulator.
while (!data.data.empty()) {
if (propagate_block_sunlight(map, ndef, &data, &unlight[0],
&relight[0]))
(*modified_blocks)[data.target_block] =
map->getBlockNoCreateNoEx(data.target_block);
// Step downwards.
data.target_block.Y--;
}
// --- STEP 2: Get nodes from borders to unlight
// For each border of the block:
for (direction d = 0; d < 6; d++) {
VoxelArea a = block_pad[d];
// For each node of the border:
for (s32 x = a.MinEdge.X; x <= a.MaxEdge.X; x++)
for (s32 z = a.MinEdge.Z; z <= a.MaxEdge.Z; z++)
for (s32 y = a.MinEdge.Y; y <= a.MaxEdge.Y; y++) {
v3s16 relpos(x, y, z);
// Get node
MapNode node = block->getNodeNoCheck(x, y, z, &is_valid);
const ContentFeatures &f = ndef->get(node);
// For each light bank
for (size_t b = 0; b < 2; b++) {
LightBank bank = banks[b];
u8 light = f.param_type == CPT_LIGHT ?
node.getLightNoChecks(bank, &f):
f.light_source;
// If the new node is dimmer than sunlight, unlight.
// (if it has maximal light, it is pointless to remove
// surrounding light, as it can only become brighter)
if (LIGHT_SUN > light) {
unlight[b].push(
LIGHT_SUN, relpos, blockpos, block, 6);
}
} // end of banks
} // end of nodes
} // end of borders
// STEP 3: Remove and spread light
finish_bulk_light_update(map, blockpos, blockpos, unlight, relight,
modified_blocks);
}
VoxelLineIterator::VoxelLineIterator(
const v3f &start_position,
const v3f &line_vector) :
m_start_position(start_position),
m_line_vector(line_vector),
m_next_intersection_multi(10000.0f, 10000.0f, 10000.0f),
m_intersection_multi_inc(10000.0f, 10000.0f, 10000.0f),
m_step_directions(1.0f, 1.0f, 1.0f)
{
m_current_node_pos = floatToInt(m_start_position, 1);
if (m_line_vector.X > 0) {
m_next_intersection_multi.X = (floorf(m_start_position.X - 0.5) + 1.5
- m_start_position.X) / m_line_vector.X;
m_intersection_multi_inc.X = 1 / m_line_vector.X;
} else if (m_line_vector.X < 0) {
m_next_intersection_multi.X = (floorf(m_start_position.X - 0.5)
- m_start_position.X + 0.5) / m_line_vector.X;
m_intersection_multi_inc.X = -1 / m_line_vector.X;
m_step_directions.X = -1;
}
if (m_line_vector.Y > 0) {
m_next_intersection_multi.Y = (floorf(m_start_position.Y - 0.5) + 1.5
- m_start_position.Y) / m_line_vector.Y;
m_intersection_multi_inc.Y = 1 / m_line_vector.Y;
} else if (m_line_vector.Y < 0) {
m_next_intersection_multi.Y = (floorf(m_start_position.Y - 0.5)
- m_start_position.Y + 0.5) / m_line_vector.Y;
m_intersection_multi_inc.Y = -1 / m_line_vector.Y;
m_step_directions.Y = -1;
}
if (m_line_vector.Z > 0) {
m_next_intersection_multi.Z = (floorf(m_start_position.Z - 0.5) + 1.5
- m_start_position.Z) / m_line_vector.Z;
m_intersection_multi_inc.Z = 1 / m_line_vector.Z;
} else if (m_line_vector.Z < 0) {
m_next_intersection_multi.Z = (floorf(m_start_position.Z - 0.5)
- m_start_position.Z + 0.5) / m_line_vector.Z;
m_intersection_multi_inc.Z = -1 / m_line_vector.Z;
m_step_directions.Z = -1;
}
m_has_next = (m_next_intersection_multi.X <= 1)
|| (m_next_intersection_multi.Y <= 1)
|| (m_next_intersection_multi.Z <= 1);
}
void VoxelLineIterator::next()
{
if ((m_next_intersection_multi.X < m_next_intersection_multi.Y)
&& (m_next_intersection_multi.X < m_next_intersection_multi.Z)) {
m_next_intersection_multi.X += m_intersection_multi_inc.X;
m_current_node_pos.X += m_step_directions.X;
} else if ((m_next_intersection_multi.Y < m_next_intersection_multi.Z)) {
m_next_intersection_multi.Y += m_intersection_multi_inc.Y;
m_current_node_pos.Y += m_step_directions.Y;
} else {
m_next_intersection_multi.Z += m_intersection_multi_inc.Z;
m_current_node_pos.Z += m_step_directions.Z;
}
m_has_next = (m_next_intersection_multi.X <= 1)
|| (m_next_intersection_multi.Y <= 1)
|| (m_next_intersection_multi.Z <= 1);
}
} // namespace voxalgo